Pivotal role for endothelial tetrahydrobiopterin in pulmonary hypertension.
نویسندگان
چکیده
BACKGROUND Pulmonary hypertension is a fatal disease characterized by vasoconstriction and vascular remodeling. Loss of endothelial nitric oxide bioavailability is implicated in pulmonary hypertension pathogenesis. Recent evidence suggests that the cofactor tetrahydrobiopterin (BH4) is an important regulator of nitric oxide synthase enzymatic function. METHODS AND RESULTS In the hph-1 mouse with deficient BH4 biosynthesis, BH4 deficiency caused pulmonary hypertension, even in normoxic conditions, and greatly increased susceptibility to hypoxia-induced pulmonary hypertension. In contrast, augmented BH4 synthesis in the endothelium, by targeted transgenic overexpression of GTP-cyclohydrolase I (GCH), prevented hypoxia-induced pulmonary hypertension. Furthermore, specific augmentation of endothelial BH4 in hph-1 mice by crossing with GCH transgenic mice rescued pulmonary hypertension induced by systemic BH4 deficiency. Lung BH4 availability controlled pulmonary vascular tone, right ventricular hypertrophy, and vascular structural remodeling in a dose-dependent manner in both normoxia and hypoxia. Furthermore, BH4 availability had striking effects on the immediate vasoconstriction response to acute hypoxia. These effects of BH4 were mediated through the regulation of nitric oxide compared with superoxide synthesis by endothelial nitric oxide synthase. CONCLUSIONS Endothelial BH4 availability is essential for maintaining pulmonary vascular homeostasis, is a critical mediator in the pathogenesis of pulmonary hypertension, and is a novel therapeutic target.
منابع مشابه
Role of tetrahydrobiopterin in pulmonary vascular remodelling associated with pulmonary fibrosis.
BACKGROUND Pulmonary hypertension in idiopathic pulmonary fibrosis (IPF) is indicative of a poor prognosis. Recent evidence suggests that tetrahydrobiopterin (BH4), the cofactor of nitric oxide synthase (NOS), is involved in pulmonary hypertension and that pulmonary artery endothelial-to-mesenchymal transition (EnMT) may contribute to pulmonary fibrosis. However, the role of BH4 in pulmonary re...
متن کاملTetrahydrobiopterin in pulmonary hypertension: pulmonary hypertension in guanosine triphosphate-cyclohydrolase-deficient mice.
The regulation of pulmonary vascular tone is a complex process and represents a balance between constrictor and dilator influences. In pulmonary hypertension, whether caused by hypoxia or flowand pressure-induced remodeling, the balance is tilted predominantly toward vasoconstriction. Despite decades of research, the initiating events in most patients with primary pulmonary hypertension remain ...
متن کاملEffects of tetrahydrobiopterin oral treatment in hypoxia-induced pulmonary hypertension in rat.
Endothelial nitric oxide synthase (eNOS) plays a major role in maintaining pulmonary vascular homeostasis. Tetrahydrobiopterin (BH4), an essential cofactor that stabilizes the dimerization of eNOS and balances nitric oxide (NO) and superoxide production, may have therapeutic potential in pulmonary hypertension. In the isolated perfused lung, we demonstrated a direct effect of exogenous administ...
متن کاملVascular endothelial dysfunction: does tetrahydrobiopterin play a role?
Tetrahydrobiopterin is one of the most potent naturally occurring reducing agents and an essential cofactor required for enzymatic activity of nitric oxide synthase (NOS). The exact role of tetrahydrobiopterin in the control of NOS catalytic activity is not completely understood. Existing evidence suggests that it can act as allosteric and redox cofactors. Suboptimal concentration of tetrahydro...
متن کاملCombined oral administration of L-arginine and tetrahydrobiopterin in a rat model of pulmonary arterial hypertension
Alterations in the nitric oxide (NO) pathway play a major role in pulmonary arterial hypertension (PAH). L-arginine (LA) and tetrahydrobiopterin (BH4) are main substrates in the production of NO, which mediates pulmonary vasodilation. Administration of either LA or BH4 decrease pulmonary artery pressure (PAP). A combined administration of both may have synergistic effects in the therapy of PAH....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Circulation
دوره 111 16 شماره
صفحات -
تاریخ انتشار 2005